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An idea of Born is reviewed and elaborated to non-separable guan-
tum-mechanical eigenvalue problems in which the Schrodinger equa-
tion can be solved exactly for a subconfiguration. { By subconfiguration
we mean a subsystem in which one dynamic variable of the whaole
system is considered as parameter; derivations with respect to this
variable are omitted.} The eigenfunctions in the subconfiguration (e.g.,
the eigenfunctions of a Born—-Oppenheimer approximation) are used as
a basis to expand the eigenfunction of the complete problem. By
analytical methods it is shown how to construct the complete ensemble
af solutions which can be systematically mapped and classified by their
analytical behaviour in one of the singularities (in a regular singularity ).
A maodification of the Numerov procedure is given to the numerical
solution of the coupled second-order ordinary differential equations
which arise from our treatment. The analytical asymptotic solutions are
used to bridge over the asymptotic regions in which the error of the
Nurnerov procedure is large. As a concrete example the comprebensive
asymptotic analysis of the Schrédinger equation of a hydrogen-like ion
in strong homogenegous magnetic field is presented, practical methods
and computational aspects are discussed, and finally a few actual
numerical results are reported: some energy levels are given as a
function of field strangth.  © 1994 Academic Press. inc.

1. INTRODUCTION

Many guantum-mechanical eigenvalue problems for £
have the form

LDy, ¥)+ Dalv) — £] Flx, y) =0, {1)

where F(x, y) cannot be factorized in terms of the variables
xand y. D, and D, contain the potential(s) and differentia-
tions with respect to y and x, respectively, x is a parameter
of D, the general form

hE L a o
Dzl-\')="r"2(-\');§§+;\'|(-‘):ﬂf"' kolx) (2)

can be assumed. The eigenvalue E must be determined to
the boundary conditions on F so that F must be regular in
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the whole range of the variables x, y and {or bound states its
norm must be

(F, F>=ﬂF*dedx=1. )

{The variable y can represent a set of variables. We assume
dy = g(x) d¥, where g(x) is the x dependent part of dy; it is
fixed by our choice of coordinate system.)

2. INTRODUCTION TO A METHOD BY BORN
TO SOLVE (I)

If the parametric eigenvalue problem

DAy, ¥~ 1)) Bul¥) =0,  w=1,2,., (4)

is solved to the boundary conditions (imposed on @, } which
must be derived from the regularity requirement and (3) the
solution of (1) can be postulated as

Fix, y) =T fx) B(x, ¥) (5)

[1], where
D (%, ¥) = £.(x) Pfx, ). (6)

If (4) possesses centinuous eigenvalues as well, an
appropriate integral over these eigenfunctions must be
supplemented to the sum in assumption (5).

The functiens ¢, build up an orthonormalized system at
a fixed value of x for functions of y. For the sake of
generality and convenience they were normalized as

(B P} = | DO ,(X) dF = B
(7)
2.(%) = g(x) §2(x)

if o’ refer Lo eigenfunctions with discrete eigenvalue.
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On introducing assumption (3) in (1) a projection onto
b, —a multiplication by &* and an integration over
y—results in the following coupled system of ordinary
differential equations for f,(x):

[ dy B2(x, Y)ID2x) + 1ulx) = E1 L, fulx) (3, ¥) =0

By a particular choice of §.(x) the form of the coupled

differential equations for f,(x) can be influenced, i.e., a part

of £,(x} can be a priori incorporated into the functions &, .
Using (5) and (7) in (3) we find for bound states that

F =Y [ fAx)g2x) dx=1 f2,=1. (9)

We can regard our procedure—the expansion in terms of &,
and the solution of the equations arising from the projec-
tion—as convergent if the sum in (9) is convergent. This
convergence can be inspected by numerical experience after
having solved (8) numerically. The general proof of a
convergence, if exists, is beyond the scope of the present
paper.

The orthonormality of the functions @, at fixed. x does
not mean automatically that they give a complete basis for
expanding F(x, y). [tis, however, reasonable to expound the
analytical and computational consequences of the choice of
this basis and to compare the results with those coming
from the use of other bases. A less complicated (more
widely used) basis can be constructed in terms of a single
variable—usually y. If, e.g., hydrogen-like ions are treated in
a strong magnetic field which is of the general form (1) when
using the Legendre or Landau basis to expand the non-
factorizable eigenfunction Fof (1), in reality we use a sum of
factorized functions in terms of the variables corresponding
to x and y [2]. This inferior choice of the basis functions
may be responsible for slow convergence and the large num-
ber of the necessary terms for obtaining moderate accuracy
and for failure in some critical spectral regions, at the
ionization thresholds, or at excited states.

As examples for problems of the general form (1}-(9) we
can mention the Schrédinger equation:

(a) of a hydrogen-like ion in a homogeneous magnetic
field (in spherical or cylindrical coordinates), in homo-
geneous electric or electric and magnetic fields which are
parallel (in spherical coordinates),

{b) of a helium-like ion (in hyperspherical or in
confocal elliptic coordinates), or

{c) of the ionized hydrogen molecule {in confocal
elliptic coordinates) [3-61.
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1t is an interesting common feature of these problems that
in one of the singular points of (8), eg, at x=0 if x
represents a radius (this is a regular singularity) for the
“expansion coefficient” f,(x) all asymptotic solutions can be
found exactly by purely analytical and algebraic machinery.
On the condition whether these asymptotic solutions can be
analytically extended to the whole range of the variable x we
have an efficient tool for finding all eigenvalues and
eigenstates (without any previous experimental knowledge
of the spectrum of E). A further common f[eature of
problems (a)-(c) that by inspecting the functions f,(x) in
the other singular point of (8) (at x — oo if x represents
a radius, this is an irregular singularity) approximate
formulae can be obtained for the autoionizing levels.

Nomenclature, some remarks. A fixed value of the sub-
script « is frequently called channel, operator D, is the mixer
among the channels. If in assumption (5) and consequently
in {8) the sum Y . is confined to the term o' =a the
approximation is called adiabatic. Since the non-diagonal
matrix elements (&, D,$,) are usually smaller than the
diagonal ones the adiabatic approximation gives quite nice
results frequently. The eigenvalue u.(x) and the diagonal
clement (&, D,d,) are additional “potentials” in a one-
particle equation, their meaning can be well visualized. The
main field of skill in applying the method is to construct D,
D, and g,(x) in a manner that we have conveniently trac-
table equations when {4) and () are written down in the
actual problem. It is of utmost importance that a singularity
or singularities of the potential be incorporated into D, i.e.,
into {4); in doing so we encounter fewer problems when
treating (8).

Since the principal idea of the method appiied and
elaborated in this section was first mentioned—to the
author’s knowledge—by Born [1] in the context of
quantum mechanics of molecules and crystal lattices the
specification as a Born expansion method is proposed to
differentiate from the cother Born methods known in other
fields of quantum mechanics. The 1dea has been mentioned
in the literature occasicnally since its conception (e.g., [7]),
its analytical consequences have not been exploited, and the
coupled channel equations (8) have been solved for a
limited number of problems: by a perturbative technique for
H3, HuH in [8] while in [9] for similar molecules and
even for two electron atoms a variational iterative solution
was given. Coupled equations of type (8) have been dis-
cussed in [ 107 if the coupling did not contain df,. /dx. By the
subsequent sections we want to demonstrate that by much
analysis, algebra, and moderate computing efforts it is
possible to treat involved problems if (8) is solved by a
direct numerical integration. The Schrédinger equation of a
hydrogen atom of infinite nuclear mass in strong external
magnetic field is a simple quantum mechanical example of
the form of (1} if it is written in spherical coordinates.
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We shall use this example to give an impression of how
our general analytical considerations and our numerical
procedure work in practice.

The relation of our method to the more familiar and
widely used Born-Oppenheimer approximation is discussed
i [11]. The essence of the difference is that in a Born—
Oppenheimer approximation

L)+ () e =0, 0<x<o0, (10)

is a necessary condition which is not met in our problems
(a) and (b). (The ionized hydrogen molecule can be treated
in Born-Oppenheimer approximation or in the Born
expanston method as well. The first approach is expected to
be convenient and accurate for low-lying vibrational levels
while the second approach promises perhaps satisfactory
results near the dissociation limit.)

3. THE ASYMPTOTIC BEHAVIOUR OF EQ. (4) AND £,(x)
IN THE SINGULAR POINTS ™ AND +® OF EQ. (1)

By postulation (5} the regular behaviour of Fis provided
in the singular points of the space of y automatically
because the basis functions @,(x, y) are regular in any point
y independently from the value of x. Therefore, we have to
deal with the singularities on the axis x. Usually 2 canonical
(quantum mechanical) eigenvalue problem is described by
(4) in the singular points x"? or x® of (1) or in both points.
This feature offers a possibility to expand the eigenvalues
1.{x) and eigenfunctions @,(x, y) in terms of (a power of)
Ax:

po{dx )= 3 alm axtr” (11)
m=my

@a(-xa Y)= Z ba’,j(AxU)) ¢:’(XU): Y), .]= 15 2:
* (12)

AxW = x4,

where s, is an integer number (positive if x') =0, negative

if x* = o) and

by (AxD) =8, + ¥ b AxU" (13)

m=1

il Ax“ <1, On introducing (11}(13) in (4), using the
interrelations among the functions @, (x,y) and their
derivatives with different subscripts «, multiplying (4} by
@*(x) y), and integrating it over y, we obtain a system of
linear algebraic equations for the unknown coefficients ai""j),
b which can be solved by some labour.

S. BARCZA

As the next step expansion {12) can be directly used to
calculate asymptotic power series expansions in terms
of 4xY for the coupling matrix elements coming from
(&,, D,®..). If these asymptotic expressions and (11) are
introduced in (8) and the constraints on f,(x'"), a =1, 2, ...,
from the regularity requirement of F are taken into account
we are at least able to indicate the shape of f,(4x'7) at
0 < AxY < 1 and in the reguiar singularity of (8) we are able
to construct the complete ensemble of the possible forms of
fx), @=1,2, .., e.g., as power series in terms of Ax"’. By
this procedure all asymptotic solutions F have been found in
one of the singularities. As the last step it must be surveyed
(numerically) whether these asymptotic solutions can be
analytically extended to the whole range x"" <x < x? so
that F is regular and (3) is satisfied for bound states.

If the expansions {(11)-(13) exist all solutions turned out
to (1) by our briefly described analytical and algebraic
machienery and they can be classified very naturally, e.g., by
the number of the nodes of & ,(x, y) (which is invariant in
the interval x*V < x < x¥) and by the weight of this com-
ponent expressed through the shape (or value) of £ (x)} at
0<AxP <1 (j=1 or j=2). Consequently the solutions to
(1) can be systematically mapped and solutions cannot be
overiooked since there exist no other regular solutions in
one of the singularities. In contrast to this advantage we
mention that in a variational or other traditional solution of
(1) (e.g., by diagonalization) the initial assumptions, choice
of trial (basis) functions (nowadays frequently consisting of
some thousand elements) involve some prerequisite limita-
tions and non-transparency, therefore, solutions (whether
all (7} or rather a few ones only) can be found which are
within the preset limitations, a systematical mapping of
solutions is not available and the physical meaning of a
successful trial function (e.g., containing even quadratically
integrable singularities) is not clear. By the choice of our
basis functions & the system of Eqs. (8) seems to possess
non-transparency only which is inherent to our original
problem {1}.

4. SOME TECHNICAL DETAILS OF SOLVING (8)

After having discussed the analytical features of the solu-
tions of (8) in the singular points on the axis x we turn to
determining the solutions on the whole axis x. Equation (8)
is a system of coupled second-order ordinary differential
equations of the form

k _E
f;’+[—’+Bm] foa| a1 Kot taTE) o
k2 k2

+ Z, [Aaa’f:z' + B:u'f;:'] =0 o= 1: 21 Rt (14)
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where

b,

ox

é 0% )+’il.(q3 b,
* ax? k. \ % ax

and X" indicates that the term & = ¢’ must be omitted in the
summation.

B (x)=2 (cﬁ

fAu'(x)=(

4.1. If g#a" the calculation of the coupling matrix
elements in A,, and B,, can be simplified because D, is a
hermitian operator. A derivation of {4) with respect to x, a
multiplication by &*(x, y), and an integration over y results
in the relation

P, aD, |
(0 52) = (00 T2 0) [0t o002, 15)

where & D, /dx indicates that the parametric part of D,
{in x) must be derived and all other parts of D, must be
omitied. The same steps once more give

&'d, _ 4D, du,] oo,
(¢w2§i)*P(¢w[?a“uﬁ]ax)
8D,

+(®0ﬂ! 6 =7 u)}/[luu(x)klum(x)]

4.2. If x=a' we obtain from (7)

. 0B, L | &,
("5“’ )Jq’ Y= "2 0

(16)

and

az@a N b\ |
[dj dHJ(ax) g.dy
_( 1 dg,,)z 1 d%,
\Ex) dx ) 2g,(x) dx*

(18)

By (15)-(18) we have to compute fewer derivatives of @, for
Aq and B

4.3. We can solve (14) by direct numerical integration
as follows. If B,,.(x)=0 for all (xx’) the direct numerical
integration of equations of type (14) is possible by the
efficient Numerov procedure [107. If, however, B, #0
lower order procedures were proposed only, e.g., 2 Runge-
Kutta—Nystrom procedure [127. Now we shall reconcile
the Numerov procedure with the presence of f. in {14).
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The Numerov procedure [13] was constructed to
integrate numerically equations of the form
v {x)=w(x)v{x)+z(x) (19)

by the use of the three point recurrence relation

W 5
[1 _Ewm+l:| Um+l_[2+gh2wm:| Ve

h? i3
+[1 W 1] Um—l*_l?[zm+l+ 10z,,, + 2,4 ]

h()
0.
+0 (240 )

A derivation of (20), error estimations for one step, and
recipes to vagy the step size & were given in [14]. By the
transformation

(20)

v{®(x) =exp {J. dx [Zklz((ﬂ) 13(X):|}f1( x), (21)

Eqgs. {14) take the form {19)-{20) at each value of o if

E—kyi—u k B, 7T?
Am o 0 T g !
o k, [2@ ]
| [dk, k,dk,] 1dB,,
I, [E*k— de 2 (22)

k, B ,
@ V(2L el p 4 |ple) g plen
o §[(2k2+2) = A“]” Bt 2

where all symbols depending on x in the right side of (22),
{(23) must be taken in the point x = x,,. Finally 2*(x,,, )
must be eliminated from (23) in order to have complete har-
mony with (19) and (20). This was done by a three-point
(predictor) formula

& — (=)
r:Ll (gva

— 1609 + Tol) )(2h) — (Bol + 0% ) b3
+O(h°Y), (24)

which was constructed according to the recipes in [15],
v@, p®" were obtained from v, ¢ by (19). If
(22)-(24) are introduced in (20} we obtain a system of linear
algebraic equations for ». | which was solved by standard
procedures for each stepm=1, 2,

A final point is that we have to heed the non-trivial
problem of starting the Numerov procedure because a
three-point recursive formula like (20) is not self-starting
in contrast, e.g., to a Runge-Kutta procedure. By our
asymptotic considerations of the previous section we have,
however, the complete set of A,.(x'), B, .(x*"), f.(x),
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either for j=1 or for j=2, Consequently our asymptotic
expansions delivered just the necessary munition to
calculate the terms occurring in (20)-(24) at x, and
x, =xg+ £ Starting (20) from m=1 (14) was solved by a
shooting method: E is a free parameter, it was varied and
Fix,, y); ie, the set of f,{x,) was surveyed whether the
boundary condition is satisfied at x, — x* if we started the
integration from x, = x". If the error term in (20) was large
in the neighbourhood of x{"’ or x* we used our asymptotic
expansions for some further points 1 <m < m'".

In actual calculations the permitted relative error of v'), |
in a step was fixed. The step size was varied according to this
error to economize with the computing time; for details see
[147, where z(x) =0 was assumed. With our z # 0 the error
estimations of {147] remain, however, true. In comparison
to {24) more sophisticated lormulae were used as well,
containing more backward points, or corrector type terms
with @) . By experience, however, it was found that (24)
is in full harmony with the error of (20}, i.e., (20) and (24)
are fully compatible because the error of (24) is multiplied
by A%/12 in (20). A few actual numerical results will be
presented in the following section.

5. AN EXAMPLE

Now we want to demonstrate how to use our general
analytic considerations and modified Numerov procedure
in a concrete problem. In this section all data are given in
atomic units.

The Schrodinger equation of a hydrogen atom with
infinite nuclear mass of charge Z(=1) in a homogeneous
magnetic field H parallel to the axis z is

o 0
_0 %

or or

2

d
2.4 *,2 _ al
+{w*r* —2E*r* = 2Zr) 5'?(1 Mﬁn

n3
+ ( 5— cuzr"r,'z) =0, 25
1—n
E*=F—on,,
n=cos b,

where r and 4 are the spherical coordinates, the nucleus is in
the origin, n, is the magnetic quantum number, w =e¢ [H|/
(2me) is the Larmor frequency, o = 1 if |H| =4.70 x 10°7,
and (25) can be derived by clementary operations from
[16].

‘We assume the even and odd solutions to (25) in the form

V= S s P Bars (1 7)

I'=|ml

(26)
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by which (14) takes the form

2 2Z vi—
f‘[ﬂ+;ﬁ1+]:2E*+T_ rznuf

+A,,]f,

+ Y [Ayfr+ By fi1=0,
-

I=|ns|+ p, ims| + p+2, .. (27)
with
o,
B,(r)=4 &, —
w(r) (1”’( B 6v)
and

P, cd,.
— Ay 22 ! !
Ay (r)=4wr ((D!, pa )+6w (di,, > ),

where @,(n, v) is defined by the differential equation for the
angular oblate spheroidal function

8 2 '
[i (L=1") ——1 fi?z +vin?— #(V)] @(n,v) =0,

V2 = w2r4

(28)
[17], which is the second part of (25} and p is a parity
quantum number of the solution (zero for even, one for odd
functions @). Equation (28) has discrete eigenvalues only;
its eigenfunctions will be normalized as

1
(@), D) =J . PP dn=20, (29)
for any 0 < v < o0 in order to have
B,(r}=0. {30)

5.1. Asymptotic Analysis

Equations (25} and (27) have a regular singularity at
r=0 and an irreguiar one at r = oo.

5.1.1. In the domain 0<v<1 we assume the eigen-
functions of (28) as

By, v)= Y [(=1)0-m=n25 D vt -]

m=|nj}
x PRil(n), (31)

with the eigenvalue
p=—HI+ 1)+ DMV + ... (32)
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On introducing assumptions (31) and (32) in (28) we find

that

18

m=lny|

X [8,;+ D, v*+ O(v*)] P

S mlnslm+lng| =1
+Vl:2m+1 1 L

mi-ni  (mA1P-ny N
+——+ Pl
4mi =17 Q2m+ 1)2m+3)

—lml+1m—lnsi 32
2m+1 2m+3 M2

X [8,+ D, v+ O(V“}]} =

{{—m(m + 1)+ 1+ 1) =DV + 0(v*)]

Eigenfunctions (35) can be used directly to calculate the
coupling matrix elements. If 7 5 /'

o, .
((15,, aTk{) =N Npyli=r=*

(172) li= 1) = 1 201+ 2m + |ny) !

TRy Ux2m—lm) @ Aamt1)

A= 2m)!

(' =1 —2m—k)!

X Dx(fr;)zm D}J';]ﬂ,"i?l'f;m) + e, f=1,2.
{36)

(In (36) the upper sign refers to /" > L) If /=" we find from
(18) directly that

(33) (1+2 4 n5))! (142 = |ms|)!

e,
(‘p”ﬁ)- [(2I+3)4(2l+5)(l—|n3| P/ + [na])!

In (33) we pick up the different powers of v first and next

equate the coefficients of the different Legendre polynomials +

with zero. This procedure gives the results

12 - n? (1+1)2—n§)

= (41
I I+ )+(21_1 +

2043
2
v 4
x2[+ I + O0vY)
and
=N, Z Ui Z D1+2m P,
m=10 m=—m
where

_[(21+ l)(l—ln3|)!:|”2
" 2(1+ in3))!

and a few coefficients can be given explicitly:

(! —in3l — p)/2 (l+ 2m— |n3l)1

m) _ ¢ __
Ditan=(=1) !

I+ 2m

x ﬁ [2K(21+ 2k +1)(2]+ 4k - 1)

k=1
x (204 4k —3)]"1,

(24 |n3])!

D™, =(~1 ™ I
am = (I=2m + |n5])!

)m+(1-ln3fﬁp)/2

w [T [2k(20— 2k + 1)(2 — 4k + 3)
k=1

x{21—-4k+5)]°",

The normalization (29) requires D!V =0 in (35).

S81/11002-4

m=0,1,2, ...

(I+1n3!)! (I = |ny|)! ]
QI=1)* (=3I —2—ny ) (I=2+ [m3])!
2

T +O(v*). 37
5.1.2. Atr <1 we assume
(34) )
filry=r1 % O, (38)
m=0
(35) On introducing (34) and (38) in (27) we find that

Z (yr+m)(y,+m+ 1) D prirm=2

[21«:* 2z z(ztn
¥

r 2741
P—ni (I+1)*—n}

2_ .22 O 6
x(21—1+ 2053 ) Wt (’)]
X 5’3 C(I)rw+m
m=0

oo

o0
+ z' l:Au’ z e T L By, Z (v, +m)
=

m=0 m=0

xc;,i’)rw'+m—1]=o. (39)

By (36), {37) we obtain series expansion for A,., B, as

@
B”'= Z Bfflm+2If—['l—l)r4m+2H—l‘|—l (40)

m=0

oo
AH-:: Z A}ﬁm+2]I—I'|72]r4m+2H;I’I—2 (41)

m=0
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if /#{" and

o
A”= z A‘(';Jm+6)r4m+6. {42)

m=0

At r=0 regular eigenfunctions ¥ are obtained if in
Eqs. (39} the coefficient of the lowest power of r vanishes
which is provided by

ye=1 (43)
at an arbitrary value of ¢{’. This is in accordance with the
vanishing of the diamagnetic “perturbation™ w*r*s” in (25)
at r =0. We have two types of asymptotic solutions.

Solution A. 1f more than one coefficient ¢4’ differs from
zero the corresponding functions f;(r) are hydrogenic eigen-
functions even up to some further powers of r; i, the
coupling of Eqs. (27) takes place only in higher powers of r
because of the form (40)-(42) of the coupling matrix
clements. In other words, Eqgs. (39) are completely
decoupled at r=0, the coefficients ¢/’ are undetermined,
and this solution is equivalent to an arbitrary superposition
of hydrogen-like f,(r} coefficients in the interval 0 <r< 1.
After having fixed the non-zero coefficients ¢’ the
asymptotic solution is a unique function with F as a
parameter. By (40)-(43) in (39) we find for the first few
coefficients cf,i) of the channel with the lowest value of /,

(m+2)21+m+3) e, ,+2Zc),  +2E*cY)

2
+[ w? (12—n§+(!+1) —n ot ]
2+182/1—1

253 "
=0, m= _"2) ey 3! {44)
while
(m+ 202+ m+3) e, , +2Zel), | +2E %)
+[AZ L, +(I=2+m) B Yl
0, m=—2,—~1,0,1, (45)

is valid for the other channels and ¢!/} =0 for any /if m < 0.

Solurion B. The singular point r=0 of {25) coincides
with the force free problem (H=0) in which / is a good
quantum number and the hydrogen-like ion is in a state
with definite quantum numbers. Therefore, it seems
reasonable to treat the special case

=8,

U=ngl+p, ml+p+2, .. (46)

separately. By the value of / we defined the dominant term
of the expansion (26). As compared to Solution A the non-
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dominant terms f;,.(r), k=1,2, .., vanish much more
rapidly at r=0. For the coefficients ¢!!) of the dominant
term {44) is valid with m= -2, —1,.. 5 while the
expansion of the subordinate terms is

(47)

[z}
T+ 2k) 0+ 4k
Sroudr)= 3, SR
m=0

where the first few coefficients are

(1+2k) _ —1

Coak T2t 6k + )+ k(2 + 8k K + 1)

I+ 2k) 1+ 2k)
x {2E*c‘2k+k,f2 2Zelx
k-

1
+ Y [AGEGAI DL (4 2m+ k)
m=0

Ak —dm 1 1+2
x Bga— Privis 2m)] C(2m+';')}’
k=1,2,.., k'=0,1,23,

and

(s8]
fimalr)= 3 Cgk_+2,ﬁ]rl+4k+m: (48)
m=0

where

C”*”‘): —1
kK T Ok (2 + 2k + 1)+ k(2 + 8k + K 4+ 1)

< { 2E*CU, 2 4 2ZcU=2)
k-1
+ Y (AW D (I+4m+ k)
m=0
<Bg e,
kK=0,1273.

5.1.3. In the domain v — o0 we use

u=2v(n+ 1}

The transformation
@ =(1—n*)™"2 exp{ —u/2} L(u) (50)

puts (28) in the form
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aL dL
2vuzﬁ+2(|n3| +1 mu)v-gl;

1
+3 v —p—(Ins) + 2v) [ (Insl + 1] L

d2L dL
—u{u;,?+ (sl + D)=l =

—(|n3I+1)L}=0. (51)
If v = ¢0 and
v —(ms] + 2v)(Jns[ + 1)
= dvg, g=0,1,2, .., {52}
(51) admits the solution
Liu)— L (u) (53)

which leads to a regular &, where L!™! s an associated
Laguerre polynomial, Therefore, for v — co we assume the
eigenvalue in the form

T —k
p=vi+ > e,

(54}
E=—1
while the eigenfunction is
Lwy=% v Y D L= (@) (55)
m=Q m=—m

On putting assumptions (54) and (55) in (51), using some
interrelations among associated Laguerre polynomials,
picking up the different powers of v~!, and equating the
coefficients of the different Laguerre polynomials with zero,
we find that

U=v:—=2(2g+ Ins| + 1) v+ 2q(qg+ |ns| + 1)+ [n5] + 1
+ g+ 1Y (g+1+|n3])* —q*(g+ [m:])* 1 (4v)
+[{g+ 1) (g+1+1n3]Y 2+ |ns] +2)

g+ n)? g + I YBD + 00T (56)
and
— M 2 L 2ylasl/2
¢**”‘{W+mmﬁ] (t=m)
xexp{ —vin+ 1)} L(u) (57)
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and a few coefficients can be given explicitly:

Rim) g 1ym+a+ +1(q+m)!
Diim=(=1ymmres 4"m ¢!
g! (g +1ns))1

D‘(M) ={—1)9+r+! .
som={=1) 4"m! (g—m)! (g—m+ |n;)!?

The leading term of the expansion of the coupling matrix
elements is

(tD 6¢q.)_ (g'g'H? .

oy [(g+Ins)t (g + In5]) 1172

kf (g+m+|n;)1

—k

m=0 2(gxm)!
Sim)  [lk—m—1)
XD Dy T m—y

—(g+m+|ny|+ 1)
58
{m—mvm—m+mm 58)

and

e\ 1
(@0 G8) =3 L L0+ D2+ gl 1 1015,

—[(g+ g+ Ins| +1)12 8, .,
+ EQ(Q+ |”3|)]1/2 5q‘q-+1]
(q!g')'"”
4 (g + 1ma) g + {ns] )1 ]
K (gEm+ ng) !
* L T gam)!

yimy Fltk—m-—2)
XDQ’:I:m Dq'?(k—m-—Z)

(g+m+|ny| +2)?
( ><(£J+m+|n:,|+1)2)
{g—m)g—m—1)
(g —m+\ns| —1Xg —m+ |ns4))

k=|q"—ql

(59)

(the upper sign and row apply to ¢’ > g), integrals of type
fe =}
Lv e UL 7 () L%y (1)

were neglected. The number of the nodes of & is the same at
v=0and v —» oo if

g=(—lns|—p)2 (60)
We note here the asymptotic degeneration of the even (odd)

@, and odd (even) &,,., to a common solution with
L () in expression (50) according to (60).
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5.1.4. Because of the irregular singularity of (27) in the
asymptotic range r— oo the type of the asymptotic
solutions could be explored only. By introducing x=r""!
and using (58), (59) we find

B =BPx%+ ... 61)
if g#4',
Ay =A8x"+ ... (62)
where
§=2lg—q'| -1,
G=21g—q'| —2+40,,+26, . _1+38,4.1)
and (27) takes the form
XY+ [2E* +2Zx— (V' ~p,) x>+ 4,1 1,
+ Y [Agy Sy — By x*f1=0. (63)
.
Our main observation is that by (56), (59), (62),
2E* +2Zx+ (u,— V') X7+ A,
= —Kk)+2Zx+ O(x"), (64)

where x,=[—2E*+2(2¢+ |n3] + Dw]"% In (64) the
term —vx®= —w?/x? was cancelled; consequently the
asymptotic behaviour of f, at x=0is not determined by an
equation of type

X7 —ox =0 {(65)
which would have provided a common asymptotic
vanishing of type

£, o« exp{ —w/{2x?)} (66)
for any g. Rather, we have
So=exp{—K/x} v,(x) (67)
with a common k. We can assume, e.g.,
g
= 3 e (68)

m=10

we have, however, to bear in mind that (68) is not the most
general form. (Equations (67) and (68) represent a special
form of the general solution

oy

Jo= X

m=—o0

g) v+
e x

(69)

S. BARCZA

which is very inconvenient to an eventual analytical
analysis. An analytical method has not been found to
determine (69) at x = (.)

On using {61}, (62), (67), and {68) in (63) we can
determine &, y,, and some coefficients ¢'¢ if

Y, cl@xrer k24 2x[Z+ ey, +m—1)]

m=0Q

+ X3y, +m)y,+ m—1)}

a
+ Z'{[Af;f}x‘*”+ ] T ey
]

m=0

[=2)
—[BRx"+ 1 X [eexme
m=0

+ (v, +m) ci,";'"x"’q'+’”+1]}=0 (70)

is solved for x <1 by equating the coefficients of the
different powers of x with 0. Two solutions have been found;
these do not form the complete ensembie of the possible
solutions.

Solution C. We choose a channel g* as the dominant
term at x=0; c§") is arbitrary,

A
yq'=yq‘ik=_;+k+1 (71)
c(lq‘) =Ygl —7,4) e Z + KYge) (72)
Cgﬂk” =2 [{1—-38,) A?&),ak-z)cgﬂ"_z)’
— KB -8 VY (2ko), k=12,
(73)

where
glk)=gq* Lk,

and a little more complicated expression can be obtained for
g=£ 1)
c} .

Solution D. We can choose

K # K] (74)

for any g which leads to
Ye=Yo—4d (75)
e =(?—xl el VB {76)

where ¢=1,2, .., ¢’ and v, are arbitrary. This solution
gives a divergent F at x=0, as can be inferred from
introducing it in (9).
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5.1.5. From the computational point of view the result
of our comprehensive asymptotic analysis is twofold. We
have analytic expressions for A,., B,., u,in the asymptotic
domains of v, where their direct computation is not free of
problems like loss of digits, lengthy iterations, and the
amount of computing time,

We found the two types (the complete ensemble) of
regular asymptotic solutions a2t O0<r <1, at the regular
singular point of (27) an one type at x =0, int the irregular
singuiarity of (27). Using them we can start the modified
Numerov procedure very precisely. We are able to save
many computing time since we have fi(r) or f, (x) for
r, x <m'h, m" < h~! which ought to be found by many trial
shootings otherwise. In many channel computations it
was found namely that the resulting functions f,{r,) or
J.tx,) were sensitive to the appropriate starting of the
channel coefficients (ie, to df./dr|,_, {{'=0L1+2,.) or
dfyfdx|,-¢ (¢'=¢,¢gx1,.)}), in contrast to a single
channel calculation in which the error in the first derivative
of the unknown function disappears very quickly not far
from the starting point [21].

5.2. The Computation of the Coupling Matrix Elements
at Intermediate Values of v

By the transformation

@=(1-n")"" g(n, v) (77)
(28) takes the form
(l—nz)g%—Z(lnaH 1)'?%%
= Llns| (sl + 1) = v7* + u(v)1 ¢ =0.  (78)
"The series expansion of the solutions to (78),
6= 3 caine, (79)
m=0

can be found by introducing assumption (79) in (78) and
equating the different powers of n to zero from which the
recurrence relation is obtained for ¢,,,

—2 2 —_
v Um+1C",+1—M'mCm+VC'm71—O,

m=0,1,2,..,c_,=0, (80)
where

v, =2m(2m +2p — 12
W= (2m+ |ns] + 1)(2m +2p + |n5]) + o
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Equations (80) represent a system of homogeneous linear
equations which has a non-trivial solution if and oniy if its
determinant vanishes. This condition is satisfied by a special
u(v) function given by the solutions of the equation as

vy b
wg————--- =0
Wy— Wy—

(81)
Proof for the convergence of series (79) and detaiis of the
procedure sketched in (77)1-(81) were given in [187].

A FORTRAN program was written to solve (81) by the
series expansion technique of continued fractions described
in [19]. The function p,,(v)—the mth root of (81)—was
computed from the form

Ve —1 y Uy Uin 1
_‘-+Wm_l—7p‘*—w—*—-“ =[(H, V)IO
m Wmi1

W2 — Wy

(82)

At a fixed vaiue of v u was varied and the root was deter-
mined by an accuracy |du/p) <107'% The length of the
second continued [raction in (82) was increased until the
relative accuracy of t(y, v) reached 5% (at #(u, v)=0 as
well). Loss of digits during the computation of the
continued fraction was carefully controlled. The numerical
value of u(v) was used in the numerical solution of (27} in
the interval v in which asymptotic formula (34) or (56)
failed to give a prescribed accuracy (usually 107 "'). Aty » 1
it was useful from the computational point of view to

rearrange (82) by shifting.m to higher values (eg., tom + 5

at v~ 50}, A few p(v) functions are drawn in Fig. 1.
In a subsequent FORTRAN program the normalized
functions &,(v, #) were computed by using (77), (79), (80)

5 10w

FIG. 1. A few p(v) functions, Drawn line: #;, =0, dashed line n,=1,
dotted line n; =2.
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FIG. 2. A few matrix elements for 7, = 0, The curves are labelled by the value of /if r =0.

with the p(v) determined according to the preceding
paragraph. For (16) ¢®,/0v was computed by numerical
differentiation of the coefficients ¢,, of expansion (79) by
a midpoint formula. (Using this d®,/dv the accuracy of
satisfying (30) was controlled; typically |B,| < 10~% was
found numerically. If / # {" by deriving (29) twice we find a
check again which consists of integrals over the products of
@, and J@./ov if (16) is used. For this zero result
107 —10"!" was found in the computations.) In order to
be able to interpolate A, By the coupling matrix elements
were computed by an accuracy 10~ ° to a grid of v points in
the intermediate range of v, the distance of the grid points
was Av=0.01 at v<6 and it was increased to Av=0.1 at

v>30. In the interval v<0.01 and v> 40 the asymptotic
formulae (36), (37) and (58), (59) were used, respectively.
For orientation a few matrix elements are drawn in Fig. 2 if
ny=0.The ny=1, 2, ... families of the matrix elements show
similar morphology if they are arranged according to .the
number of the nodes of &,

{n our problem the coupling matrix elements do not have
singuiarity at all (this is not a general feature of problems of
type (1}); they vanish at r=0 and r — o0 as well. In the
diagonal part of Egs. (27) —(A4,+ (g, — v?)/r*) is an addi-
tional potential to the Coulomb one. It is a remarkable
feature of this potential and of the coupling matrix elements
that they are non-monotonous in the whole interval
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FIG. 3. A lew adiabatic potentials for #; =0 ates =1 and w = 36.

0 < r < oo but they have inflexions and minima or maxima.
A plot the adiabatic potentials shows that corresponding to
the maximal value of (®,, 3°®,/0v’} an additional repulsive
core appears at a fixed value of r (r > 0) (see Figs. 3). With
increasing w it strengthens and gets closer to r=10, the
maxima even exceed the threshold value (x,=0in (64)) if
w is large. The accompanying minima correspond to quasi
equilibrium positions for the electron. Beyond these regions
the adiabatic potentials become Coulombic rapidly.

Since with increasing |/ —/’| the non-diagonal elements of
Ay, By vanish more and more rapidly in both asymptotic
domains and their order of magnitude differences are
present in the intermediate range as well Egs. {27) are rather
loosely coupled to each other. This is a good omen for the
numerical solution; we can expect a high accuracy in £ or
from a few channels.

5.3. The Numerical Integration

The coupled channel equations were solved by the
modified Numerov procedure according to Section 4.3. The
limits (r, or x,) of the integrations were fixed by the require-
ment that £{r,) or E(x,) be stable in the sixth figure.

5.3.1. Outward integration. First the limits E,and £, on
E, (E,<E<E,) were estimated, next by following the
cstimation of the relative error/step

¥1
A h®

(=) — (=)}
™ T 2400 T 240 (83)

{14], a grid of the points r was determined in a manner that
|T{*)) < 10~% was for E, and E, as well in any grid point m
and for all channels a. Except for E and £, the vaiue of all

symbols in (27) were stored for the points of the grid in a
suitable form to avoid superfluous additions.
Sinceat0<r=mh <1,

L+ 0l

T =
175 240m’®

(84)

1s independent of h our asymptotic expansions (38),
{(43)}-(48) were used at m' < 5 as indicated in Section 4.3 to
bridge over the critical region where | T/)| > 10 ¢ holds, the
subroutine was switched off which changed A.

The solutions were parametrized at a fixed value of @: an
adiabatic approximation and Solution B have E as an
undetermined parameter only while Solution A has the
ratios ¢y ’/c§ * ¥ etc. as parameters. By iterating for them we
have to find the solutions which show up correct asymptotic
behaviour at r — 0. The two asymptotic selutions are of
completely different type at = 0. The undetermined coef-
ficient o/} is the normalization factor in A and B as well.

Table I is a summary of some results in the subspace
magnetic quantum number n, = 0, even parity; we compare
our results to the extensive material published in [2]. It is
remarkable that the relative error of the two-channel
calculation for the ground state has a vanishing tread out-
side the strong mixing (w = 10), at high field strength as well
as at small field strength. For the state 1so the high field
limit of the computations is where the functions f,(r,)
became a noisy function of E: E was changed, e.g., by 10~
or 1071 while f;(r,) =0 oscillated randomly on a scale
Lfotr ymax(| £,(0)) 21077 =10"%, 0<r<r,, 1=0,2,..
The instability was found in more than one-channel integra-
tions only; with increasing the number of the channeis and
field strength w it became more and more serious. Iis most
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TABLEI
The Eigenvalues E of the Levels lsg and 10se of a Hydrogen Atom in the Homogeneous Magnetic Field H

@ Epay E fi;) f%z} f%s} f%o L
0.01 —0.499900; 2 —0.499902 1.000 12
0.03 —0499104; 2 —0.499101 1.000 11
— 0499105 0.999992 0.000008 12
0.07 —0495198; 3 —0.4%5096 1.000 10
—0.495199 0.99981 0.00019 10
03 —0.427463; 7 —0421702 1.000 9
—0427330 0.9954 0.0046 9
—0.427460 0.99496 0.00496 0.00008 9
10 —0022214; 11 —0.022121 09876 0.012 0.0004 8
—0.022206 09877 0.0118 0.0004 0.00001 8
70 503879; 21 5.06793 0988 0012 5
504101 0.9862 0.0129 0.0009 4

150.0 144.639; 12 147850 1.000 15

145277 0.994 0.006 1.5
0% —0.00499916 1.000 330
—0.00499890 0.6687 03313 320
—0.00499885 0.5405 0.3783 00812 320
—0.00499885 0.5137 0.3765 0.1006 0.0276 320
5x 103 — 000497651 1.000 320
—0.00497278 0.5673 04327 320
—0.00497164 04479 0.4572 00948 320
—0.00497148 04239 0.44%4 0.1151 00116 120
10—+ —0.00491450 1.060 320
—0.00488917 0.3389 0.6611 320
—{(.00488788 02605 0.5934 0.1462 320
— 000488739 0.2466 0.5748 01632 00154 320

Note. Ep,7is taken from [27; it is followed by the number of channels in Legendre or Landau basis. The number of the steps in the numerical

integration did not exceed 600.

likely interpretation is that the coupling matrix elements
were noisy in the seventh etc. figures and this noise was
amplified during the numerical integration. The instability
and the enormous digit loss is under study; they become
proncunced in the region of strong mixing and are probably
connected to the physical nature of the problem. For the
state 10so the high ficld limit is where the accuracy of E in
the four-channel calculation is less than six figures.

Table I shows that if the angular oblate functions are used
as a basis the necessary number of channels is reduced
to ca half compared to that of the Legendre basis. The
Schrodinger eqution of a hydrogen atom in strong magnetic
field can be solved by the Born expansion method if cylin-
drical coordinates are used. From the excellent agreement of
the computed eigenvalues by the adiabatic solution—the
upper-lower theorem was applied in [20]—and by a many
(=10) channel calculation in a Landau basis at the high
field limit we can infer that a 2-3-channel calculation using
the Born expansion method gives roughly the same
accuracy as the 10-channel calculation in the Landau basis
[2].

The solutions of type B were found at discrete values of @

only where c{’(w)=0 was in a solution of type A; e.g.,

in a two-channel computation for the state 3s¢ ¢ =0
was at w=0.0428052, E=0.0002598 and c{’'=0 was at
w=0.16714, E=0.13072.

5.3.2. The inward integration was performed for Solu-
tion C only because this selution was promissory of saving
computing time if compared to the needs of Solution A:
many shootings could have been saved because there was no
need to iterate for the parameters ¢,/c, etc.

The relative error/step was estimated from (67) directly:

(q) K
T3z erree——,

7 240h°m 2 (85)
T4 =10"% was taken in (85), (67) was used for x<
(m’ 4+ 5)h, while (20) was applied for the actual integration
of (63)if x> (m' + 5)h. At x — 0, f,(x,) - 0 was searched
for the channels /+#0, and /% could be increased rapidly
because T'9 oc h8x'%; stable E(x,) was found from a
moderate number of steps. The expected behaviour,

froo x (86)
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TABLE II

Some Results from the Outward and Inward Integration
at @ = 0001, for the States 3ds and 3so

E hmin lhmax m* rs CU_] C}.‘_l flé[)) f2(2)
(outward)
—0.0555254 001 032 206 50 1108 1
—003555349 001 032 209 30 —646 1196 0.162 0.838
—00554862 001 032 209 50 259 1
—00554773 0001 0256 275 50 283 00283 0837 0.163

(inward) X, i

—0.0555412 10~ 0256 308 40 =10
—{.0555264 10~* 0409 492 35 =8
—0.0555255 10~* 04096 646 30 =4
Note. E= —00555349 and —0.0554774 are given from a threechannel

computation in [2], m* is the number of the steps of our integrations,
1T =|T%| = 10~° was except for the last line, where |74 = 10~ was,
the values of ¢, (/=0 or 2) normalize (26) to unity.

where !=2g + |n,| + p, was not found, even in adiabatic
calculations. The failure to find (86) was caused by
cuammulative errors and insufficient accuracy of our com-
putations. The eigenvalues from the inward and outward
integrations were in agreement only in achabatic calcula-
tions. This result is a verification of the second point in
Section 5.1.5 by means of computations; the adiabatic
results are insensitive to the starting while this 1s not true
for the non-adiabatic results. Finally we mention that the
inward integration gave the same precision in £ if & and
|T%) were smaller, compared to the outward integration;
ie., the inward integration needed more computing time.
This finding could be anticipated from comparing (27} and
(63). Table 11 reports some results.

6. CONCLUSIONS

A Born expansion method was reviewed and elaborated
in detail for non-separable quantum mechanical eigenvalue
problems. It was indicated in general terms how to
determine asymptotic expansions of the coupling matrix
elements and diagonal potentials.

By purely analytical and algebraic considerations in one
of the singular points of our problem (in the regular
singularity on the axis x) all regular solutions were con-
structed and they could be mapped in a very natural way. It
was sketched how an initial value of the wave function can
be calculated in a singular point so as to be able to start a
numerical integration from this point.

Qur procedure has the advantages compared to more
conventional procedures (perturbative or variational treat-
ment or diagonalization techniques in a basis which does
not fit the problem optimally) as follows:
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— analyticity, consequently clarity, at least in one of the
singular points

-— our basis lunctions constitute a basis to expand F in
wich we are able to make a lucid distinction whether a
problem itseif is integrable or not. The choice of more ad
hoc bases to expand F can, namely, lead to numerical and
computational troubies in some domains of the spectrum £
where the problem (1) itself is perhaps fully regular,

The Numerov procedure was fitted te our coupled system
of second-order ordinary differential equations which con-
tained originally first derivatives of the unknown functions
in the coupling terms.

The asymptotic analysis and some numerical results con-
cerning the Schrédinger equation of a hydrogen atom in a
strong homogeneous magnetic field were included which
gave an impression of the usefulness of our method. The
numerical results show that the Born expansion method is
a viable alternative for computational applications which
leads to a reduction of computing efforts, compared to an
gigenfunction expansion in a Legendre or Landau basis.

All computations could be performed by an IBM-com-
patible PC: two smaller FORTRAN programmes (com-
posed of ca 300-400 statements} gave u(v) and the matrix
elements while the numerical integration was performed by
a program of a length of ca 1200 statements. Computing
times are of relative value if PCs are used; we mention that
the four-channel computation of Solution A (an accuracy
10~%n E at @ = 1.0) needed some hours.
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